Acta Cryst. (1997). C53, 1451-1452

Tris(3-chlorophenyl)phosphine Oxide

Omar bin Shawkataly, ${ }^{a}$ Kuppukkannu Ramalingam, ${ }^{a} \dagger$ Suppramanian Selvakumar, ${ }^{a}$ Hoong-Kun Fun ${ }^{b}$ and Abdul Razak Ibrahim ${ }^{b}$
${ }^{a}$ Chemical Sciences Programme, Centre for Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{b} X$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: omarsa@usm.my

(Received 24 March 1997; accepted 21 April 1997)

Abstract

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{OP}$, the $\mathrm{P}-\mathrm{O}$ bond distance is 1.483 (3) \AA and the mean $\mathrm{C}-\mathrm{Cl}$ distance is 1.741 (4) \AA. Two sets of significantly different $\mathrm{P}-\mathrm{C}-$ C bond angles are observed: 115.8 (3) and $124.3(3)^{\circ}$. However, the mean O--P-C bond angle [112.0(1) ${ }^{\circ}$] indicates near-ideal tetrahedral coordination at the P atom. The presence of bulky chloro substituents is manifested by the different orientations of the phenyl rings.

Comment

Triphenylphosphine oxide has been shown to cocrystallize with a number of proton donors (Al-Farhan, 1993; Lynch, Smith, Byriel \& Kennard, 1992; Fenske, Teichert \& Becher, 1976). Formation of crystalline complexes with UO_{2}^{2+} has also been reported (Panottoni, Graziani, Croatto, Zarli \& Bombieri, 1968). There has been considerable ambiguity about the stereochemistry of triphenylphosphine oxide; four crystal structure reports have been published (Bandoli, Bortolozo, Clemente, Croatto \& Panottoni, 1970; Ruban \& Zabel, 1976; Spek, 1987; Baures \& Silverton, 1990), each involving a different space group. This report describes the crystal structure of a related compound, tris(3-chlorophenyl)phosphine oxide, (I).

The $\mathrm{P}-\mathrm{O}$ distance in (I), 1.483 (3) \AA, is similar to the value reported recently for triphenylphosphine oxide,

[^0]1.487 (2) \AA (Baures \& Silverton, 1990). The mean $\mathrm{P}-\mathrm{C}$ bond distance is $1.813(3) \AA$, which is slightly longer than the distances observed in triphenylphosphine oxide and its compounds; $\mathrm{P}-\mathrm{C} 1.799$ (3) \AA in OPPh_{3} (Baures \& Silverton, 1990) and P-C 1.76 (1) \AA in its adduct with tricarboxylic acid (Lynch, Smith, Byriel \& Kennard, 1992). This slight lengthening is probably due to the presence of electronegative chloro substituents in the phenyl rings. The mean $\mathrm{Cl}-\mathrm{C}$ distance is 1.742 (4) A. The C-C bond lengths in the phenyl rings are normal.

The mean $\mathrm{O}-\mathrm{P}-\mathrm{C}$ bond angle is $112.0(1)^{\circ}$, indicating tetrahedral coordination at the P atom. The $\mathrm{C}-\mathrm{P}-$ C bond angles show considerable variation: 105.2 (1), 106.7 (2) and $108.7(1)^{\circ}$ for $\mathrm{C} 1-\mathrm{P}-\mathrm{C} 7, \mathrm{C} 1-\mathrm{P}-\mathrm{C} 13$ and $\mathrm{C} 7-\mathrm{P}-\mathrm{C} 13$, respectively. All the phenyl rings are planar. The dihedral angles between the planes of the phenyl rings and the planes containing O, P and the corresponding ipso-C atom are 26.5(1), 22.4 (1) and $16.9(1)^{\circ}$. In contrast, in the unsubstituted analogue, these angles are $77.2(1), 36.3(1)$ and $11.9(1)^{\circ}$.

Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 30% probability level; H atoms are shown as spheres of arbitrary size.

Experimental

Fine light-yellow crystals of the title compound were separated as a by-product. A reaction mixture containing $\mathrm{Cr}(\mathrm{CO})_{6}$ and tris(3-chlorophenyl)phosphine ($1: 1$ ratio) was heated under reflux for 6 h and then reduced to half its volume. A lightyellow solid separated, which was repeatedly recrystallized from a solvent mixture of toluene-dichloromethane- n-hexane ($1: 2: 1$). Crystals of the title compound separated on the sides of the container as a result of aerial oxidation of the phosphine, leaving the pale $\mathrm{Cr}(\mathrm{CO})_{5}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{3}\right]$ compound at the bottom.

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{OP}$
$M_{r}=381.60$
Triclinic
$P \overline{1}$
$a=6.1930(10) \AA$
$b=9.0770(10) \AA$
$c=15.8820$ (2) \AA
$\alpha=90.690(10)^{\circ}$
$\beta=96.390(10)^{\circ}$
$\gamma=101.750(10)^{\circ}$
$V=868.1(2) \AA^{3}$
$Z=2$
$D_{x}=1.460 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Siemens $P 4$ diffractometer $\theta / 2 \theta$ scans
Absorption correction: empirical ψ scans
(Siemens, 1994)
$T_{\text {min }}=0.637, T_{\text {max }}=0.872$
5055 measured reflections
3963 independent reflections 2387 reflections with

$$
I>2 \sigma(I)
$$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 39 reflections
$\theta=4.82-12.46^{\circ}$
$\mu=0.620 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Thin rod
$0.46 \times 0.22 \times 0.22 \mathrm{~mm}$
Light yellow

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.175$
$S=0.908$
3963 reflections
256 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1125 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.49^{\circ}$
$h=-1 \rightarrow 8$
$k=-11 \rightarrow 11$
$l=-20 \rightarrow 20$
3 standard reflections every 97 reflections intensity decay: $<3 \%$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship.

Supplementary data for this paper are available from the $I U C r$ electronic archives (Reference: MU1324). Services for accessing these data are described at the back of the journal.

References

Al-Farhan, K. A. (1993). Z. Kristallogr. 208, 181-186.
Baures, P. W. \& Silverton. J. V. (1990). Acta Cṛst. C46, 715-717.
Bandoli, G., Bortolozo, G., Clemente, D. A., Croatto. U. \& Panottoni. C. (1970). J. Chem. Soc. A, pp. 2278-2280.

Fenske, D., Teichert. H. \& Becher. H. J. (1976). Chem. Ber. 109. 363-369.
Lynch, D. E., Smith, G., Byricl, K. A. \& Kennard. C. H. L. (1992). Aust. J. Chem. 45, 835-844.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Panottoni, C., Graziani, R., Croatto, U., Zarli. B. \& Bombieri, G. (1968). Inorg. Chim. Acta, 2. 43-48.

Ruban, G. \& Zabel, V. (1976). Crフsst. Struct. Commun. 5. 671-677.
Sheldrick, G. M. (1990). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin. USA.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Siemens (1994). XSCANS. X-ray Single Cinstal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc.. Madison. Wisconsin. USA.
Spek. A. L. (1987). Acta Cryst. C43. 1233-1235.

Acta Cryst. (1997). C53, 1452-1454

p-Nitrobenzaldehyde Isonicotinoylhydrazone

Hoong-Kun Fun, ${ }^{a}$ Zhong-Lin Lu ${ }^{b}$ Chun-Ying Duan, ${ }^{b}$ Yu-Peng Tian, ${ }^{b}$ Xiao-Zeng You, ${ }^{b}$ Yu-Mei Guo ${ }^{c}$ and Xiao-Yang Gong ${ }^{\text {c }}$
${ }^{a} X$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{6}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University; Center for Advanced Studies in Science and Technology of Microstructures, Nanjing 210093, People's Republic of China, and ${ }^{\text {c }}$ The Hospital of County Gangu, Gansu Province 741200, People's Republic of China. E-mail: hkfun@usm.my

(Received 25 March 1997: accepted 30 May 1997)

Abstract

Molecules of the hydrazone $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$ are planar and exist in the keto tautomeric form. The configuration at the azomethine $\mathrm{C}=\mathrm{N}$ double bond is E. The structure is stabilized by a network of hydrogen bonds.

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grants 09-02-05-6034 and 09-02-05-6024. KR thanks

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{P}-\mathrm{O}$	$1.483(3)$	$\mathrm{Cl1}-\mathrm{C} 3$	$1.740(4)$
$\mathrm{P}-\mathrm{C} 7$	$1.810(3)$	$\mathrm{Cl} 2-\mathrm{C} 9$	$1.741(4)$
$\mathrm{P}-\mathrm{Cl} 3$	$1.812(3)$	$\mathrm{Cl} 3-\mathrm{C} 15$	$1.744(4)$
$\mathrm{P}-\mathrm{Cl}$	$1.816(3)$		
$\mathrm{O}-\mathrm{P}-\mathrm{C} 7$	$111.7(2)$	$\mathrm{C} 6-\mathrm{Cl}-\mathrm{P}$	$123.9(3)$
$\mathrm{O}-\mathrm{P}-\mathrm{C} 13$	$11.88(14)$	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{P}$	$116.4(3)$
$\mathrm{C} 7-\mathrm{P}-\mathrm{Cl} 13$	$108.69(14)$	$\mathrm{C} 12-\mathrm{C}-\mathrm{P}$	$124.7(3)$
$\mathrm{O}-\mathrm{P}-\mathrm{Cl}$	$112.35(14)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{P}$	$115.3(2)$
$\mathrm{C} 7-\mathrm{P}-\mathrm{Cl}$	$105.16(14)$	$\mathrm{C} 18-\mathrm{C} 13-\mathrm{P}$	$124.3(3)$
$\mathrm{C} 13-\mathrm{P}-\mathrm{Cl}$	$106.7(2)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{P}$	$115.8(3)$

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: direct methods SHELXTL/PC (Sheldrick, 1990) and PARST (Nardelli, 1983). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL93.

[^0]: \dagger On leave from: Department of Chemistry, Annamalai University, Annamalainagar 608 002. Tamilnadu, India.

